NATIONAL ADVISORY COMMITTEE ‘FOR :AERONAUTICS

TECHNI GAL -un‘uomn‘nuu NO'.?- 720; |

RECENT RESULTS OF TURBULENCE RESEAR031

By L Prandtl
INTRODUCTION

The irregular motions, called turbulence, play a
prominent part- in all ‘technically important flow phenom-
ena, Turbulence, on the one hand, is the cause of unde-
sirable'floi“resistanco;jvhile.'oh the other hand, it has
the very useful characteristic of increasing the pressure
in the currents. The control of these phenomena is very
important for the flow specialist. Numerous researches
have therefiore been recently undertaken for the purpose ‘
of discovering the laws of turbulent flow. In the present
article an attempt is made to review the most imgportant re-
sults of these researches. Relations of immediate pract1-
cal interest are discussed. -

The first two sections treat of two prominent ques-
tions, namely the origin of turbnlence and the character-
istics of turbulent currents. In the third section con-
clusions are drawn for the flow along a rough wall, where-
by an.important relation for the weloecity distribution is
revealsd. The principles are also applied to straight
rough and smooth tubes. Here it was possible to develop
formulas for flow velocity and reaistance, which show ex~
cellent agreement with the experimentse, and which also in
contrast with previous purely empiriceal formulas, hold
good for very large Reynolds Numbers for which no experi-
mental data are available. The peculiarities in tubes
with fine-grained roughness at moderate Reynolds Numbers
are represented by a single curve. Test results with arti-
ficially roughened tubes are given and confirm the relation-
ship mentioned.

l"Neuere Ergebnisse der Turbulenzforschung " Zeitschrift
des Vereines deutscher Ingenieure, vol. 7, .no..5, February
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The results obtained with tubes are applied to the
resistance of plates to a longitudinal flow. Moreover,
the characteristics of the flow in wide and narrow and
curved channels, as likewise the mixture phenomena of
fluid currents with surrounding fluids and alse the phe-
nomena behind moving bodies are considered. Lastly, newly
discovered relations between the turbulent exchange of ve-
locity and heat are considered, and new conclusions are
drawn regarding the finer details of turdulent flow.

During the last decade the investigation of the ir-
regular wixing motions, which are called turbulence and
which affect all technically important flows, have been
especially thorough and fruitful. These mixing motions
.produce effects, as if the viscosity of the fluid were in-
creased a hundred or ten thousand fold or even more. This
circumstance causes the great resistance of fluids in
pipes, the frictional resistance of ships and airships and
other undesirable resistances, but also the possibility of
increased pressure in diffusers or along airplane wings
and blower vanes., Without turbulence, separation would oc-
cur in these cases, so that there would be only a small re-
covery of energy in the diffuser and impaired efficiency
of wings or vanes.

The investigation consisted of a determination of the
nuimerical data and their systematic arrangement. General-
ly the investigation was not carried to an actuwal theory
(which is very difficult), but the results help to support
theoretical conclusions. Often dimensionsal .considerations
together with intuitive insight lead to important conclu-
sions. If, e.g. density (i.e. inertia) and viscosity are
the only determinative properties of the fluid for the phe-
nomenon, one is led ta a Reynods Number = density/viscosity
X velocity X length (Re = vl/u, in which VvV 1is the "kine-
matic viscosity", i.e. viscosity/density). If Reynolds
Number has the same numerical value in two cases, we may
expect exactly the same course in both cases, only with a
different length and time scale according to circumstances.
In individual cases the application of this rule may, how-
ever, require consideration as to which velocity and
which length is actually determinative for the process.

There are t70 mein guestions which were invegtigated
theoretically and experimentally:

1. How and ucnder what immediate conditions does tur-
bulence originate?

')
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2., What cap be aaid regardlng turbulent motion, par-
tietlarly regard1ng the mean values of the velocities and
forces? ’ :

The sécond’ queetion is obvio1sly the more important

one from the technical viewpoint.

ORIGIN OF TURBULENCE .

Regarding the first guestion I can be quite brief,
both because I have recently expressed myself on this sub-
ject (refersnce 5) and because there is here much that is
still in doubt. The most important fact is that turbulence
always occurs when the velocity profile shows a turning
point (fig. 1) and when the viscosity effects are not too
great. Any’ flow with such a velocity profile 13 unstabls
in the absence of fluid frigtion, i. e. small deviations.
in magnitude and direction incféase of themselves and cause
a complete- revereal of the flow.. An originally slight wave
in the streamlines leads gradually to the production .of
turbulence through the toppling over of the waves.  These
phenomena can be delayed by strong viscosity effects.

This indicates that the tendency to become tubulent -
depends on the magnitude of the Reynolds Number. Velocity
profiles with turning point occur, e.g. in the boundary .
layers produced by ‘viscosity effects, when the pressure in-
creases in the direction of flow or, in other words, when
the flow is retarded. Such points in the fluid therefore.
have'a‘strong tendency to become turbulent, but even the
unaccelerated rect1linear flow along a wall tends to become
turbulent at a sufficiently large Reynolds Number, This
can be explained by the fact, that the inflow is never abso-

.lutely undisturbed and that there are always some irregu-

laritfes in the velocity distribution. Unstable velocity
distridbution is largely due to only slightly damped turn-
ing motions with axes parallel to the direction of flow,
Such turning motions direct some portions of the fluid a-
gainst the wall and other portions away from it, so that,
even at low velocity, with the lapse of time, portions hav-
ing & lower velocity become interspersed with portions.hav-
ing a higher velocity, thus necessarily prodncing instabil-
ity. e

There is still another cause of turbﬁlénde, which ﬁaﬁ
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discovered in a theoretical manner (references 2, 3, and
4) and which call for special consideration when thers

are none . of the above-mentioned disturbances. In the flow
along a wall, there occur certain slow distrubances which
above a certain critical Reynolds Number, increasc in
strength and thus produce #n their retarded zones, after
their amplitudes have become great enough, the preliminary
condition for turbulence. It is worthy of note that the
critical Reynolds Numbers for two different cases, as de-
termined theoretically by Tollmien (reference 4) and
Schlichting (reference 6), are in good agreement with the
experimental values,

N

Experiments on the Production of Turbulence

: ‘In order to obtain more light on this gquestion, we
investigated the production of turbulence by experinments

in channels 20 cm (7.87 in.) wide and 6 m (19.68 -ft,) long.
Though we proceeded with great care, we found it impossible
to eliminate all the disturbances, so that here and there
nuclei of turbulent motion developed in irregular. succes-
sion and spread quite rapidly. : :

Clearer pictures were obtained by purposely initiating
a disturbance in the flow, as, e.g. by adding or removing
a little water through a small piece of screening inserted
in the wall. In the first case, when & small amount of
water, not yet participating in the flow, is thrust between
the-wall and the moving mass, instability is immediately
produced and turbulence develops at the point of entrance.
The amount of water introduced may be very small. In the
second case the greatest disturbance occurred in the por-
tion of the flowing water opposite the screen at the be-
ginning of the removal by suction. Behind this point the
thickness of the boundary layer was reduced by the suction,
and the inner portion of the water flowing past the bound-
ary layer had therefore to flow over a sort of step from
the thinner boundary layer to the thicker layer on the
downstream side of the screen. This created enough of a
disturbance to cause the disintegration of the boundary
layer in a short time. TFigure 2 shows this effect and the
further development of the turbulent region.

The flow was rendered visitle by scattering aluminum
dust on the surface of the water. A slcwly operating mo-

o«
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"tiOn-picture camera was mounted on a car which kept pace
. with the flow 80 that the same group of vortices remained

in'the field of the camera. In the top p1cture the ob-
llque Btreamlinesat the left show the location. of the suc-

“tion point, while the formation of the first vortex.in the

middle indicatés the location of the "step." Other vorti-
ces developed on the upstream side. In the last picture
the original vortex is shown at the extreme right.. It is
evident that it carried water from the boundary layer

i(which was purposely strewn more thickly with aluminum

dust) far into the interior of the flow,
_ CHARACTERISTICS OF TURBULENT CUREENTS

We will now consider the laws of fully developed tuf-
bulence. The method of presentation which .I ehall .employ,
does not follow the historical development but is inteéend-
ed to show the present status a1l the more pa]inly.' I.
shall begin with a statement, regarding the behav1or of an
ideal fluid without viscosity. In reality there is no
such fluid, but it is of advantage for many considerations

‘to know what would occur in such an ideal fluid, because

the laws of the ideal fluid (due to the absance of viscos-
ity) are simpler than those of an actual f1u1d

According to our previous statoments the tendency to
creases or, in other words, as the viscosity decreases
(under otherwise like conditions). At the zero limit of
viscogity the Reynolds Number obviously. becomes infinite,
necessitating the conclusion that the flow of an ideal
fluid would generally be turbulent. If it is also assumed
that the bodies or walls, past which the fluid flows, Are

"mathematically smooth’, the surface friction would also be

zero and we would thus obta1n the theoretical behavior of
the ideal fluid, as stated in old texttooks on hydrodynam- -

ics.  If however, the surfaces are rough, it may be assumed
that an area of separation deve10ps at each individual
point of roughness, however slight.® The flow thus acquvres

2In slightly viscous fluids, a regular separation of the
flow occurs on projecting parts of the wall. In the limit-
ing transition”tb vanishing viscoeity,.Helmholtz separat1on
surfaces are devcloped with finito velocity Jumpa.
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& .turbulent character .frém the matual effect of the various
smell areas of separation which.are unstable ian themselves
.and have a disturbing effect on one another. At each rough

2gpot a pressure difference develops between its upstrean
-and downstream sides, thus producing & resistance which is
preportional to the sguare of the velocity.

*From bhis considerat1on it may be assumed that it is
permisgsible tio. makditheoretical assumptions regarding the
laws of turbulence;,  in which the vigcosity of the fluid is
put at zero. The following considerations clearly show
that we are thus on the right track and that, as a matter
of fact, the turbulerl -resistance-in the interior of the
flow is practically independent of the viscosity. 1In a
thin layer near the wall, however, the effect of the vis-
cogity persists, provided it-is not concealed by the ef-
fect of great roughness.

We will briefly explain a conception which has been
found useful for the more accurate investigation of the
turbulent mixing processes. This is the so--called "mix-
ing path," which plays a similar role in turbtulent mixing
processes to that played by the mean free path in the mo-
lecular diffusion of gases. In both these precesses shear-
ing stresses (or apparent shearing stresses) are developed
by the continuous interchange of energy between fluid lay-
ers flowing parallel to one another at different velocities.
The following simplified representation can be made of
these really quite complex processes.

It is assumed that any particle, which, by collision
with neighboring particles, acquires a motion crosswise to
the flow, has, in the direction of flow, the mean momentum
of the layer from which it came, and that it now traverses
a distance | <crosswise to the flow, before it collides
with other particles or mingles with them. Such exchanges
occur in both directions, and thus the faster layer re-
ceives particles from the slower layer, which naturally re-
tard the former, and, conversely, the slower layer receives
particles from the faster layer with an accelerating effect
on the former.

The effect of the two fluid layers on each other is
therefore the same as if there were friction between them.
The difference between the molecular processes and the
turbulent processes is due only to the fact that, in one
cage, the individual molecules, and, in the other case,
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whole groups of molecules participgte in the exchange. If
u 1is the velocity of the flow and y the coordinate in
the direction.at{ right angles to the flow in which the
change ‘in velocity occurs, the difference ‘between the veloc-
ities of the two-layers, separated by the distance. ‘1, 1is
(du/dy).. This, according to what precedes, is also the
vaelocity -difference:of a particle which, coming from the
'obher layer, mingles -anew with its present environment.

, In order to. determine the magnitude of the frictional
force or, more accurately stated, the shearing stress be-
tween the two layers, we must know the magnitude of the
mass .exchanged per second. This, as referred to the unit
arca, can be expressed by the product of the density
pt=v/eg) and an exchange velocity v'. In the case .of the
molecular motion, this velocity is proportional to the ve-
locity of heat transfer. Since the latter is one third
each along the x, y and z axes and since, in our example,
ve can put, in first approximation, v! .= c/s. where c-
4is the mean velocity of the heat transfer. Hence the shear-
ing stress3 . : ' ;e

- 1 4 Qu _ du. :
TEg e tgy =gy o €1)
In the case of the turbulent exchange of masses, the
velocity v!' should.naturally be taken of the game order
of magnitude as the difference in the velocities of the
two layers at the distance ! from each other, since the
fluid masses collide at velocities of this order of mag-
nitude (references 8, 9, end 10). On eliminating the un-
known numerical factor v', we thus obtain the shearing
stress : : :

ey

The elimination of the numerical factor only denotes a
somewhat different definition of ! . In this wzy we ob-
tain, for the simple viscosity effect, shesring sirzsces
proportional to du/dy and, for the turbuler’ 7zzcravge
(whereby the effect of viscositv is disregarded). sn:saring
stresses proportional to (du/dy)2 which iz iu gosd a-
greement with the hydraulic resistances proporticnail to the

aBy a more accurate calculation, Boltzmann found, for thg
viscosity 'm, the value” m = 0.3503-p ¢ 1 which differs
tut little from that imemation 1.~ ST B
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.isqua;e of. the. velocity.

W1th formula 2 the proolem of the hydraulic flow re-
M.sist@nces is brought bac!: to the other problem of the dis-
‘tr1bution of the mixing path 1 1in the flow. So long as
_we have no rat1ona1 theory of turbulent flow which deduces
" the laws of turbulent phenomena from hydrodynamic differ-
entlal equations, we have to obtain the data regarding the
distribution of the mixing path by experimentation, so that
only one unknown quantity is thus replaced by another, Nev-

ertheless, considerable progress has been made, since it
has been found, at least for the larger Reynolds Numbers
(from about 105 up) that the mixing path is practically
independent of the magnitude of the velocity and is, more-
over, subject to quite simple rules for its distribution
in space.

Dimensional considerations often furnish useful in-
dl%?tions. For example, in considering the flow near a
more/less smooth flat wall, on the assumption that neither
the viscosity nor the roughnes%@f the wall has any arpre-~
ciable effect at the point under consideraticn in the in-
terior of the fluid, we are in a position to make a state-
ment regarding the distribution along the mixing path. For
a point at the distance y from the wall there is no other
characteristic length than this distance y. The mixing
path 1 1is also a length, so that there is no other pos-
sibility than to put the mixing path proportional to the
distance from the wall:

1 .:: K}r.

Here K is a universal numerical coefficient, which can
be determined experimentally. If we assume a state of
flow in which the shearing stress 7T 1is constant, we ob-
tain

du _]__ T.

dy Ky Vp

according to equation 2, and therefore

=i+

q = J (1n y .+ counst.) (3)

O

Such a velocity curve, dependent on the distance from the
wall, is quite like the oneé actually observed (fig. 3).
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Comparison with the experimental resvlts yields the number
0:4 as the approximate value of K.

Karman's Theory

Von Karman (reference 12) assumed that the turbulent
mixing processes are the same in all cases, so that only
varisations in .the leng+h and tims scales occur from case
to case and from place ‘to place in the flow. Under these
01rcumstances the efrects of viscosity are regarded as neg-
ligible in compar1son with the effects of turbulence. Con-
tlusions are now drewn from Euler's equations regarding
these two scales, -the Tirst of which obviously agrees in
principle with our mixing path 1. The velocity w of the
basic flow, which is assumed to be & function of y alone,
is determined from a Taylor series interrupted after the
quadratic term. The mean forward velocity of the particle
under congideration has no ‘immediate effect on its inner
motion. Of the given quantities therefore, only du/dy and
d2u/dy® need to be considered here. We first have a time

as the time criterion for the period of the mixing process.
For dimensional reasons, the interference velocities u!

in the X direction and v! in the Y direction are therefore
proportional to /T, 1i.e.

ut ~ v! ~.1€;

which agrees with the previous formulas. For the longitu-
dinal scale of the mixing process, Von Karman finds the re-
lation

5/

in which k' is a constant determ:ned experimentally.
This expr3931on of Karman's theory goes beyond previous
expressions, because it furnishes a method for caliculating
the magnitude of the mixing pati independently of the dis-
tance from a wall. If this expression is introduced into
equation 2 and integrated on the assumption of a constant
shearing stress in the region uander consideratiosn, we ob-
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téin
1 T
u =%y 5‘[1n(y + 6+ 0] o (4)

i.e. practically equation 3 again. The required agreement
with the experimental results obviously leads to putting
k' = K. Hence both formulas yield the same velocity dis-
tribution in case of cocnstant shearing stress.

Theré is no longer any agreement regarding .the shear-
ing stréss in the other assumptions. Moreover, the formu-
la 1 = Ky "is without any: vaelid basis, since, due to the
variability of-the shearing stress, a still further length

T/%% is available; but even Karman's formula

_ dusd®u

here means only another estimated approximation, since it

was obtained by disregarding the effect of d3u/dy3 and
higher terms in the series development for wu. In the

case T = constant, the two solutions coincide, because

the velocity distribution, according to equation 3, -is trans-
ferred by changing the integration constant, in case. the
shearing stress T remains unaltered, so that there is

here also a pronounced similarity with the basic flow.

From equation 3 it is easily seen that the guantity

JT[e is a velocity. This velocity is very valuable for
various similarity considerations in what follows. We will
therefore designate it by v, and call it "shearing-stress
velocity." The formula T =Qvx=< is of similar form to
that for the dynamic pressure

2
pu,

op~

Pg

which is comprehensible for dimensional reasons, since the
shearing stress is also a force per unit area. The appar-
ent shearing stress T of the turbulence is generally very
small as compared with the dynamic pressure. Hence in v,
we are also dealing with a velocity which is relatively
small as compared with the flow velocity wvw. Comparison
with equation 2 shows, moreover, that

Va =1 QE
dw
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Hence,K v, -is of the order of magnitude of .the mixing ve-
locities u" and v!' .

FLOW ALONG A ROUGH WALL

From our standpoint the flow along a rough wall is_ 
51mnler than .along a smooth wall, because the v1sc051ty _
plavs a preponderant role in the latter case, but not - in
the formér. It is therefore bbttef to covs1der the flow
along a rough wall flrst. JIf k 18 a length 1nd1¢at1ng
the roughness of the wall, it follows, from a simplé 51r—
ilarity’ consideration on thé basis of the ideal filnid
that the velocity distributions near the wall, with gso—
metrically similar roughnesses, are also geometrically gim-
ilar, so that the size of the grain k furnishes the cri-
terion for it. The formulated expression of this relation-
ship is that the velocity at the distance y is a function
of the ratio y/k. If this velocity digtribution is based
on equation 3, which, according to what has precesded, is at
least advisable for the regions farther in the interior of
the fluid, 4t is found that the integration constant of e-
quation 2 = constant - 1In k. D

A hitherto unpublished series of experiments dy Niku-
radse with tubes of various diameters, which were given
different degrees of roughness by gluing to them sifted
sand with a suitable varnish, showed that the new constant
= 3.4 = 1ln 30, k being the mean diameter of the grains
of sand used to produce the roughncss. With l/K = 2.5,
wve obtain the foruula

w = 2.5 v*1n<§9~x\
X

By a shifting of the coordinates by the amount of k/SO,
it is also possible to obtain u =0 for y = 0.% Hence,

7
"u = 2.5 veln \} + --J!> S - (8)

*It is still an open, though not very impoftant question as
to the exact location of the axis of the cocordinates between
the protubenarnces of the roughness. : - |
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or, if the ﬁatubal iogarithm is replaced by a common log-
arithm,

o= 5.75°v, log (1 + -***) ~ (5a)

Equations 5 and 5a therefore show a fixed relation between
the velocity distribution, shearing-stress velocity, dis-
tance from the wall and the degree of roughness k. This
first holds good for the kinds of roughncss used in the
experinents. . For other forms of surface roughness, more-
over, there is.probably another number instead of 3C, also
dependent ‘on the. manner of definlng the roughness scale.
Preparations for tests in this connection are being made
in Gbttingen.

,- Equation 5 immediately affords us the opportunity to
check the above statement regarding the behavior of the
ideal fluid. Represent the velocity at the distance y = h
by u=nu With this assumption v, can be eliminated

} 1
from equation 5a.
v, = u'l
. v h
5.75 log {1 + 30 =)
\ k
and consequently
log(1l + 30 R
u=u N 1‘< - (6)
- iy
Log<} + 30 ¥/ .
The corresponding shearing stress is
2 pBy"

(7)

TER V. = ‘ NE
33| log (1 + 30

from which it follows that the shearing stress is propor-
tional to the square of the flow velocity u,. The effect
of the roughness of the wall is likewise shown by equation
7.

If we pass to the matienatically smooth wall, i.e.,
to kX = o, then, according to equation 6, u = u; and
T= o0 for all values of y constant, as stated in the

v
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classical hydrodynamics on the ideal fluid. It is also
obvious that even a submicroscopic roughness with a k

of the order of magnitude of the diameter of an atom would
still show considerable deviations from the ideal behavior.
OQur formulgs can no longer be used for such cases. The
relations are here considerably altered by the viscosity,
as will be shown in what follows.

THE FLOW IN TUBES

It is an important discovery that, in a straight tube,
the relative motion of the fluid particles at moderately
large Heynolds Numbers depends on *he tall in preusure and
not at #ll on the character of the wall, so that therefore,
with constant fall in pressure, the velocity-distribution
curves 1in tubes of greater and less wall roughness can be
brought into conformity by shifting along the velocity ax-
is (of course aside from a layer in immediate contact with
the wall, where the velocity increase is naturally greater
on a smoother surface than on a rougher one). This rela-
tion was discovered by Darcy (reference 14) 75 years ago
in his researches on resistance in pipes and was then em-
phasized, but was subsequently forgottenm. Fritsch dis-
covered it anew by direct observation in his experiments
with rough channels at Aschen (reference 17). From our
standpoint this discovery is 1dentical with the .fact that
the distrioution of the mixing path along the inside of the
tube is practically independent of the nature of the wall.
In conunection with our earlier discoveries it is natural to
surmise that the formula

b=ro(T)

can be written for the mixing path, where y 1is the dis-
tence from the wall and r the radius of the tube. Since
the distribution of the shearing stress along the tube is
known when the pressure fall is given, the distribution of
1 can be verified bty measuring the velccity distribution
with the aid of eguation 2., It is found that the above
statement is confirmed, at least for the higher Reynolds
Numbers. Figure 4 gives the result in nondimensional form
and consequently shows the course of the function f, . 1In
the function f (y/r), | 1is the mixing path; r, radius
of tube; y distanrce from wall; and k, mean longitudinal
dimension of frouglhiness.
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Conversely, on the basis of this function and with
the aid of equation 2, we can calculate du/dy, from
which, by an integration, an expression for the velocity
itself can be obtained. On the introduction of the shear-
ing stress velocity vs this expression takes the form

Umagx - @ = VT (TN - (8)

This equation, which was first developed by Von Karman
(reference 12), has also bcen experimentally confirmed,

as shown by figure 5, in wvhich the test points are given
“for smooth tubes and for various rough tuhes. In function
f, (v/r), Voax ig the marximum flow velocity; =, flow ve-=
locity at the point y; vx, shearing~stress di strlbution ki

Vyp, T,shearing stress; op, density.

We can now pass from the velocity u at any distance
y from the wall to the mean velocity ™. We thus obtain
from equation 8 an expression of the form

Uoox - B = V4 X coefficient - (9)

Nikuradse's Gottingen experiments yielded 4.07 as the val-
ue of this coefficient. It was a pieee of good luck that
our equation % or the special form for a rough wall (equa-
tion 5) yieldedS, up to the middle of the tube, a useful
approximation for the function f,(y/r), namelys

sFor more accurate calculations, a small supplementary term
wou1ld have to be added, which will be included later, at
least in the final result.

Darcy (reference 14) deduces from his experiments
— 3/s
- 1u = 11.3 “%l-(r -y)

l d .
(4 1is the gradient and therefore = =~ Zo EE; the meter. is

the unit of length)s This equation can be put in the form
of equation 8 and thus becomes

Ymax

£ L o= 50871~ L3/
2 r \ T,
which, with thé exception of the wall vicinity wherc Darcy
made no meastvements, agrces very well with modern results
(fig. 5).
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P n L= 5,75 1log = S (10)
2\r> 5 & 7

We now have all that is needed to calculate the resistance
of a rough tube for a given guantity. We will first write
the customary expression for the drag coefficient A:

dp

- L =

dx

>

Qﬁ (1l)

' From the equilibriun of a water cylinder of radius r'= d/2,
.we obtain, for the shearing stress To of the wall, ths

expression o '

and accordingly

= 2T _ 2 0 va® (12)

'The comparison of equations 11 and 12 yields, with the

tube diameter 4 = 2 r,

o Mo

- § & (13)

By the use of equation 5a at the middle of the tube (y = r)
" we obtain, when, under the logarithm, we disregard 1 in

comparison with the very great value 30 r/k.and put log
30 = 1.477,

.. r '
Upax = V4 (5.75 log ” f 8.5) : ‘(14)

On the other hand, according to equation 9

+ 4.43)

iH

T = upgg -~ 4:07 vy = v,(5.75 log

Taking equation 13 into consideration, we now have

A = 8 Va©_ 8 — o e E l(15)

a (5.75 log % + 4.43)° (2.0 log L+ 1.57)°

z

This is very well confirmed by experiment, . with only the
slight difference that 1.74 is better than 1.57 in the de-
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nominator. This difference is connected with the sup-
pressed auxiliary term in equation 10. The experimental
confirmation of 'the formula is best accomplished by plot-
ting l/«/h against log r/k. According to the foregoing

1/V/X= 2.0 log E + 1.74 N (186)

The plotting must therefore yield a straight line. PFigure
6 shows this line for six rough tubes according to measure-
ments by Nikuradse. (See also figure 9.) The general form
of equation 14, as likewise an equation analogous to equa-
tion 16 for a coefficient of resistance based on Vo0 Was
first developed by Von Karman. He also made the reot3ilin-
ear graph. '

BEffect of Viscosity (smooth tube)

It has already been mentioned that the effect of vis-
cogity is greater when the roughness 'is less, but of course
only oa the boundary-layer phenomena. The rough places are
here more or less covered by a slower-moving layer of fluid
and are thus rendered ineffective as regards resistance.
Progress can also be made here with a dimensional consider-
ation. The shearing stress is responsible for what takes
place on the wall and conseguently the velocity vx based
on this shearing stress, and also the criteriomn of rough-
ness k. A wall characteristic v,k/p can be developed
from these two with the kinematic viscosity by analogy with
the Reynolds Number. Since, with fixed v,, the state of
flow in the interior remains unaltered, the only remaining
problem is to adapt the integration constant of equation 3
to the new relations. This 1is accomplished by introducing
a modified roughness criterion,

instead of k, into equations 5 to 7 and 14 to 16. Regard-
ing the course of the function fgz, it follows from the
foregoing that it must be equal to 1 for large values of
the wall characteristic, in order to restore the previous
relations. 4An immediate conclusion can, however, be drawn
as to what form the function f, must assume for small
values of v, k/v. The ovservations show that, for slight



¥.A.0.A. Techuical Memorandum No. 720 17

but still appreciable roughness, the rough tube does not
differ practically from a perfectly smooth tubde, provided
the Reynolds Number ig nou unusuailv hign. Such a cond1-
tion is obtalnea when ‘

voai. - s 1 i : v ‘
;. fsxe——: = coefflclent X —EL—‘
' o MR T . ) Vo

since k is thus removed from the foregoihg fofmulaé and
v . \ A
is replaced by coefficient: X i “The experiments confirm

this resnlt and show, with respect to the coefficient
which leaves the dimensional consideration still open,
that our previous value of k/30 must be replaced by
p/9 Ve+ Instead of equation 5a, we now obtain the formula
for the velocity distribution in the tube

) .. : . . v . . .VA
T i‘v*'(5.75 log *vz + 5.5) - (17)

On plotting u/v against log v, yﬁﬁ we obtain a straight
line which must contain all the p01nts near the wall for
the velocity profiles of all smooth pipes. .An exception is
formed only by the values at very small nondimensional dis-
tances from the wall v*y/u, at which the turbulence is
still affected by the viscosity. Up to the previously
mentioned supplementary function, eguation 17 is also valid
to the middle of the tube. The experimental points in fig-
ure 7 actually contain not only the parts near‘the'wall,
but extend almost to the middle of 'the tube. One can there—
fore note sma1¢ systematlc dev1ations from the straight

"~ line, which of course have to be con51dered in a .more. ace
curate theory (reference 18),

For comparison figure 7 also shows, by a dash line,
the veloc1ty dlstrlbutlon 1aw

‘ 1.\ 177
B= g, 7( 3 . (18)
Vi A

as determined on the basis of the Blasius formula for the
friction of the tube. ‘It is found that, in a central re-
gion for which alone data were formerly availadble, it prac-
tically coincides with the straight line of equation 17,
but deviates considerably above and below this region. Im
fact it was long since discovered that, at higher Reynolds
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Numbers, the seventh root is replaced by the eighth and
ninth roots, etc. The reason for this behavior is mani-
fest, since the law of th¢ seventh root now appears to be
only an approximation formula for the real law, which is
represented by equation 17, whereby the particular numeri-
cal values of the approximation formula naturally still
depend on the region in whlch they should agree with the
accurate formula7

For the coefficient of resistahce, we obtain from
equation 16 by the same modification

1 v, T
-~ = 2,0 log ~%— + 0.5
v o

ey

Taking equation 13 into consideration, we can put

v, T T r vk q 1
N4

x = Z__ _— = —---ﬁ ———
v

v v 1 2.8
With o d/v = Re, we obtain
C1//A" = 2.0 log (Rey N ) - 1.0 (19)

This formula was verified experimentally be Nikuradse
(reference 20) up to the Reynolds Number 3.4 X 10%. It
must bc.changed only by the consideration of the previously
menticned supplementary function of the numerical value
from - 1.0 to - 0.8. The final formula for the resistance
cocfficient is then ‘ o

1/ = 2.0 log (Re /X)) -~ 0.8 (20)

The calculation of the resistance coefficient corresponding
to any given value of Reynolds Number encounters no partic-
unlar difficulties, although ./ A occurs once more on the

right side. _One can, for example, assume provisionally any
value for o/ A on the right side and calculate 1+/X and
then repeat the process, if the discrepancy is too great.

In figuré 8 the course of A is plotted with respect to Re
accordLng to equation 20 togetner with the experimental val-

YBelow log v*y/lj— 2, the straight line of equation 17
shows appreciable devistions frow the test points. This 1is
due to the influence of the viscosity. If the smallest su-
percritical Reynolds Numbers are disregarded, this deviation
occurs only in a very thin layer near the wall of the .tube.
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ues. By especially good luck this formula agrees with the
exporiments down to the smallest supercritical Reynolds
Numbers.

We now turn once more to the general provlem of the
rough tube. On the basis of measurements by Nikuradse
(now being prepared for publication) the course of the re-
sistance coefficient is plotted in figure 9 against the
Reynolds Number for tubes of different relative roughness
k/r. The curves in figure 9 are based on experiments with
tubes of well-defined roughness produced by gluing grains
of sand of definite and different sizes (k) to the inside
of tubes. The conditions to the left of the eriticsl Rey-
nolds Number represent the laminar condition of smooth
flow. It is evident that there is here very little differ-
ence between the smooth and rough tubes. The curves di-
verge greatly, however, as soon as the turbulence begins,
i.e. above Re.,.jt, The curves for the lesser roughness
first follow the curve for the smooth tube and then sepa-
rate from the latter in order.

The foregoing considerations indicate a way to find
a law for the turbulent portion. We will take the wall
characteristic v*k/u or its logarithm as the avscissa and
a quantity which is constant according to the laws of the
fully developed roughness flow as the ordinate. For exam-
ple, we can take the quantity

1/./ % = 2.0 loz

v

or, if we want the corresponding law for the velocity dis-
tribution, the quantity .

<le

*®

wl

The plotting of these two gquantities on the besis of the
experimental results brings in fact the test points meas-
ured with very different roughnesses approximately on a
single curve. The two curves agree with each other up to
the scale corresponding to the relations here reprensented.
The whole problem thus finds a very comprehensive solution
on the basis of combining a few experimental values with
theoretical conclusions. What remains to be done is to
find the curves for other forms of rougchness in addition to
the curve of figure 10, which we have thus far determined
only for the special sandpaper form of roughness. Prepara-
tions are now being made for such experiments.
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*t . APPLICATION T0 O”HER CASES

Flate Resistance - Acce;erated and Retarded Flows;«q‘

~ From the behavior of the flow in tubes, when the -
‘vlablus 1aw of re51stance : ; N

‘i -~ _1/4
= o.zre (2220

. dom1nated the f1e1d conclusions had already been drawn
regard1ng the frictional resistance of plates subjected

« to flow alonP their surface (references 15 and 16). Ac~
cord:ng to the momentum theorv, the decrease in the ‘mo-
mentum of the flow due to the friction was represe ented
by a formula in terms of the exposed length of the plate
.in accord with the laws for the velocity distribution.’
This decrease in momentum per unit length along the plate
was expressed as equal to the frictionel force per unit
length. The resultlng formula fqer the coefficient of
frictional, resistance Cyg (ru31stance divided by the sur-
face area and dynamic. pressure),

S Nt :

c. = 0:074 . (V~1 S {21)

f /
(1= length of plate, v = velocity of plate), showed simi-
lar discrepancies, in comparison with the experimental re-
sults, to those shown in the resistance of tubes. The ob-
“viong thing to do now was to apply the improvedlaw of  tubu-
lar flow also to plates. The calculations are here rather
troublesome. They were first made by Von Karman (references
13 and 21). A new calcnlation in a somewhat different way
ras made by the writer (reference '18), who compiled a nu-
merical table the values of which agree very satisfactorily
with Kempf's measurements. The values in"the table werec
‘obtained by the following approximation formula of H,
Schlichting. which though it is only. an interpolation for
muld, cen e msed throughout the whole practlcal region of
turbnleut flow.
= _“_9_%39__g— : (22)
[log Tivzese '

\ ’
N 4

Cr

For the - rough plate, a corresponding. calcnlation was made
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on the basis of the law of roughness representéd in figure
10 (reference 19). o

The behavior of the turbulent friction layer in an ac-
celerated or retarded flow is offigreater importance. 4n
lmportant, ‘special case, the flow in a widened or narrowed
cnannel with flat side walls, was. investignted by Donch for
air (reference 22) and by Nikuradse for water {reference
23). BPuri's work at Zurich shonld bBe metioned here, as al-
so Cuno's experiments on an alrplans,:ng nt Hannover (ref—
erence 27).

Buri end'Gruschwitz have now made, in somewhat differ-
ent manner, the very important attempt to develop purely
mathematical metheds for csnlculating the course of the phe-
nomena in the frictionsl layer. Burit's method is simpler,
while that of Gruschwitz is more complete. Lack of space
forbids further consideration here of these rather compli-
cated calculations, With these methods it is possible to
predict the course of the frictional ‘layer for any given
pressure distribution and, under some circumstances, even
to make the important determination as to whether this flow
will adhere to the wall, as assumed, or will separate at
gome point. - A further attempt is now being made to predict
in this way the actual characteristics of an airplane wing
‘inclnding the profile drag and maximum 1ift. Should the
results ghow a satisfactory agreement with expcerimental re-
sults, this method would constitute a very considerable ad-
vance, )

FURTHER PROBLEMS -

The investigation of currents in strongly curved
channels (references 30 and 31) shows that, aside from the
"secondary currents" on the side walls as already described
by earlier writers , even the real nature of the turbulence
is here substantially altered., The two kinds of phenomena
are related in that the faster portiomns of the fluid along
‘the curved wall develop stronger centrifugal forces than
the slower portions. The faster portions therefore tend to
displace the slower portions on the outer wall. However,
'since the portions in immediate contact with the wall are
continunally retarded by friction, .a:materially accelerated
exchange is produced on the outer side of the channel by
the displacement of these retarded portions. On the con-
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”trarv the slower’ portions tend towatd the 1nner side and

the exchange is considerably retarded.

The phenomena are very 31m11ar to those in the flow
of ‘a fluid over a heated or cooled bottom surface. In
the férmer case the heated and simultaneously retarded

"portions tend to rise from the bottom, while in the latter

case’ tne cooled’ portions;, because of their greater density,

7tend to’ remain near the bottom (re*erences i1 and 32), so
"that the turbulent friction is increased in the. former

case and decreased in the latter case. Since both groups
of phenomena have been or are veing investigated in Got-

“"tingen, numerical express1ons for these influences may be

expected.

Another import.a.nt"klnd' of phenomena is involved in

the turbulent spreading’ of fluid jets and the wakes of mov-

ing bodies. The outer portlons 0f a jet emerging, e.g.
from a larger orifice (nozzle.’etc.) are very unstable and
develop into a more or less irregular vortex system. Even
for this kind of phenomena the conception of the mixing

" path held good, and it was possible, with the aid of the

simple eseumption that the mixing path in a cross section

"is constant and pr0portrona1 to the width of the mixing

zone at that point, to predict the form of the mixing zone
and'the'beloc1ty dlstribut1on in it in a very satisfactory
manner, whereby only the ratlo of the mixing path to the
mizxing zone had to be taken from the experiments {refer-
ences 9, 10, 28, 29, 36).

The heat exchange is quite closely related to the
turbulent velocity exchange. Insofar as it concerns the
flow along a wall, as shown by the experiments of Elias
(reference 33), the exchange factor has exactly the same
value, so that the curve of the temperature distribution
agrees with the velocity distribution. For the' phenomena
in the wake of moving bodies, Taylor (refevrence 34) has
recently shown that here the heat exchange is twice as
great as the velocity exchange, so that the’&emperature f

and velocity curves differ appreciatly Téylor‘bould glsn

sTaylorwdeanstrates that in this case the rotational force
of the main motion 1s exchanged in the same manner as the
heat. The exchange factor is pze’du/dy), the rotational
force in parallel motion, however, is . du/dy; and the fall
of the rotational strength- in the direction y 1is there-
fore d2u/dy?®. Tayilor enows'that then

(Concluded at bottom of page 23)
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show that theoretically the formeér condition (like form of
hese curves) is to bte expected when the vortex axes of
the interference motion are parallel to the streamlines of
the main motion, but the latter (unlike) when they are per-
pendicular to them. The unpublished Gottingen experiments
of P. Ruden show that the Taylor law of exckange 1is also
valid for the spreading of jets.

It follows therefore that, on closer inspection, there
are tvo kinds of turbulence to be distinguished, which 4if-
fer in their nature. We may call one "wall turbulence" and
the other "jet turbulence." In the former (according to
Elias) the vortices parallel to the streamlines obviously
predominate. This rather important discovery will perhaps
once more indicate the way to a real theory of the phenomena,
So long as this is not discovered, we must be staisfied with
half-empirical considerations of the kind here described.

Translation by Dwight M. Miner,
National Advisory Committee
for Aeronautics.

2
=1 o 12 QE\‘for 1 constant in a cross section. The
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Figure 2.-Development of tur-
bulence from an in-
itial disturbance.

Figure 7.~
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